Exploring Power-Voltage Relationship for Distributed Peak Demand Flattening in Microgrids

ثبت نشده
چکیده

Due to limited energy storage units in microgrids, how to regulate peak demand is one of the main challenges. Thus, researchers propose different techniques to flatten peak demand in individual residential buildings. However, if each home in the grid flattens peak demand only with its own power consumption information, it is possible that peak demand of the microgrid would not be flattened but only shifted to another period. Therefore, it is critical to let homes to cooperate with each other to flatten peak demand. In this paper, we utilize the power-voltage relationship in individual homes to enable that each home can infer the information of power consumption in the community by locally monitoring the voltage value on the common power line without leaking private information of the individual homes. The inferred information is then used for homes to flatten peak demand of the microgrids in a distributed manner. Furthermore, we leverage existing thermal appliances (e.g., water heaters) as thermal “batteries” in individual homes instead of purchasing batteries to flatten peak demand. We evaluate our system’s performance by conducting experiments and extensive empirical data driven simulations. Evaluation results indicate that our design enables homes to effectively flatten peak demand by more than 29% without affecting homeowners’ behaviors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reliability Assessment of Distribution Systems in Presence of Microgrids Considering Uncertainty in Generation and Load Demand

The microgrid concept provides attractive solutions for reliability enhancement of power distribution systems. Normally, microgrids contain renewable-energy-based Distributed Generation (DG) units, which their output power varies with different environmental conditions. In addition, load demand usually changes with factors such as hourly and seasonal customer activities. Hence, these issues hav...

متن کامل

Control of Inverter-Interfaced Distributed Generation Units for Voltage and Current Harmonics Compensation in Grid-Connected Microgrids

In this paper, a new approach is proposed for voltage and current harmonics compensation in grid-connected microgrids (MGs). If sensitive loads are connected to the point of common coupling (PCC), compensation is carried out in order to reduce PCC voltage harmonics. In absence of sensitive loads at PCC, current harmonics compensation scenario is selected in order to avoid excessive injection of...

متن کامل

A Local Power Control Scheme for Electronically Interfaced Distributed Generators in Islanded Microgrids

The conventional real power-frequency and reactive power-voltage droop characteristics are commonly employed to share the electric power among parallel distributed generation (DG) units. Despite some advantages such as easy implementation and no need for communication infrastructure, inaccurate reactive power sharing is one of the main disadvantages of conventional droop control. This paper pre...

متن کامل

A Robust Control Strategy for Distributed Generations in Islanded Microgrids

This paper presents a robust control scheme for distributed generations (DGs) in islanded mode operation of a microgrid (MG). In this strategy, assuming a dynamic slack bus with constant voltage magnitude and phase angle, nonlinear equations of the MG are solved in the slack-voltage-oriented synchronous reference frame, and the instantaneous active and reactive power reference for the slack bus...

متن کامل

Hardware-in-the-Loop Simulation of Distributed Intelligent Energy Management System for Microgrids

Microgrids are autonomous low-voltage power distribution systems that contain multiple distributed energy resources (DERs) and smart loads that can provide power system operation flexibility. To effectively control and coordinate multiple DERs and loads of microgrids, this paper proposes a distributed intelligent management system that employs a multi-agent-based control system so that delicate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014